MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction

Patrick Dendorfer* Sven Elflein* Laura Leal-Taixé

Technical University Munich

Problem

Single generator methods are incapable of learning a multimodal distribution and predict out-of-distribution samples.

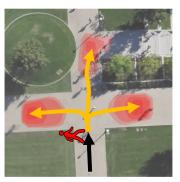
Predicting out-of-distribution (OOD) samples harming real-world applications

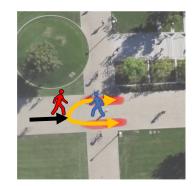
Solution

Multi-generator method with generators specializing in different modes. Path Mode Network the generators based on the observations in the

Motivation

Distribution of future trajectories of pedestrians is highly multi-modal and often has disconnected support

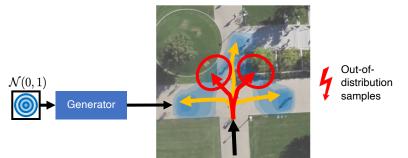




Spatial Multimodality

Social Multimodality

Single generator GANs transform a continuous latent space with a continuous function 1 The support of the output is always connected

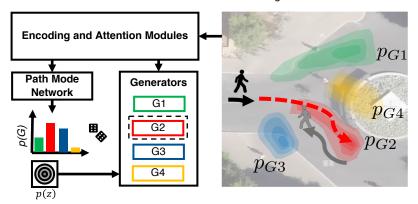


Method

Model

TL;DR

- Learn multiple generators focusing on individual modes
- Train Path Mode Network to co-ordinate individual generators



Alternating Training Scheme

- PM-Network update
 - · Compute responsibilities of generators by compare predictions of each generator with ground-truth sample
 - Minimize cross-entropy between target and PM-Net output
- Generator update
 - Obtain PM Net distribution and sample generators
 - Perform regular GAN update with sampled generators

Evaluation

ADE and FDE is not sufficient to evaluate the quality of samples

Evaluating out-of-distribution samples is possible with [Kynkäänniemi, 19]

Precision: Measures quality of samples Measures coverage of modes

Computation requires access to multiple groundtruth samples, thus consider

- Synthetic dataset
- Forking paths dataset (FPD) [Liang 2020]

Results

Qualitative results

Ground-Truth Manifold

GAN L2

MG-GAN

PECNet [Mangalam, 20]

Trajectron++ [Salzmann, 20]

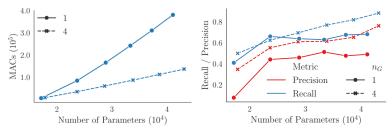
MG-GAN (ours)

Quantitative results

FPD results

	ADE ↓	FDE ↓	Precision ↑	Recall ↑	F1 ↑
GAN+L2	28.81	58.37	0.55	0.87	0.67
PECNet	13.14	24.55	0.46	0.95	0.62
Trajectron++	13.15	32.00	0.38	0.96	0.54
MG-GAN (Ours)	22.09	46.38	0.71	0.89	0.79

→ Significantly higher precision indicating less OOD samples!



→ Multiple generators perform better & require less computation with same number of total parameters!